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Abstract
We study the Bogoliubov–Dirac–Fock model introduced by Chaix and Iracane
(1989 J. Phys. B: At. Mol. Opt. Phys. 22 3791–814) which is a mean-field theory
deduced from no-photon QED. The associated functional is bounded from
below. In the presence of an external field, a minimizer, if it exists, is interpreted
as the polarized vacuum and it solves a self-consistent equation. In a recent
paper, we proved the convergence of the iterative fixed-point scheme naturally
associated with this equation to a global minimizer of the BDF functional, under
some restrictive conditions on the external potential, the ultraviolet cut-off �

and the bare fine structure constant α. In the present work, we improve this
result by showing the existence of the minimizer by a variational method, for
any cut-off � and without any constraint on the external field. We also study
the behaviour of the minimizer as � goes to infinity and show that the theory is
‘nullified’ in that limit, as predicted first by Landau: the vacuum totally cancels
the external potential. Therefore, the limit case of an infinite cut-off makes
no sense both from a physical and mathematical point of view. Finally, we
perform a charge and density renormalization scheme applying simultaneously
to all orders of the fine structure constant α, on a simplified model where the
exchange term is neglected.

PACS numbers: 12.20.−m, 03.70.+k

1. Introduction

Despite the incredible predictive power of quantum electrodynamics (QED) its description
in terms of perturbation theory restricts its range of applicability. In fact a mathematical
consistent formulation is still unknown. We want to make a tiny step in that direction.
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Following ideas of Chaix and Iracane [7], we study in this paper a model for the
polarized vacuum in a Hartree–Fock type-approximation. This so-called Bogoliubov–Dirac–
Fock (BDF) model has been derived from no-photon QED in [7] as a possible cure for the
fundamental problems associated with standard relativistic quantum chemistry calculations.

The vacuum polarization (VP) is, quoting [16], ‘one of the most interesting of the
phenomena predicted by contemporary quantum electrodynamics’. Although it plays a minor
role in the calculation of the Lamb-shift for the ordinary hydrogen atom (comparing to other
electrodynamic phenomena), it is important for high-Z atoms [37, 49] and even plays a crucial
role for muonic atoms [16, 21]. It also explains the production of electron–positron pairs,
observed experimentally in heavy-ion collisions [2, 20, 31, 42, 47].

In [7], Chaix and Iracane noted that the vacuum polarization effects are ‘necessary for
the internal consistency of the relativistic mean-field theory and should therefore be taken into
account in proper self-consistent calculations, independently of the magnitude of the physical
effects’ [7, p 3813]. Taking into account these effects, they restricted the no-photon QED
Hamiltonian (normal ordered with respect to the free electrons and positrons) to Bogoliubov
transformations of the free vacuum. This allowed them to obtain a bounded-below energy,
a property which is a huge advantage compared to the usual Dirac–Fock theory [54]: the
Dirac–Fock energy is unbounded from below, which is the cause of important computational
[7, 9] and theoretical [13–15, 38] problems.

In this paper, we show the existence of a global minimizer for the Bogoliubov–Dirac–Fock
functional of Chaix–Iracane in the presence of an external field, which is interpreted as the
polarized vacuum. This vacuum is represented by a projector of infinite rank which solves a
self-consistent equation: it is the projector on the negative eigenspace of an effective mean-
field Dirac operator taking into account the vacuum polarization potentials. This equation
naturally leads to an iterative fixed-point procedure for solving it. In a previous work [25],
we proved the convergence of such an iterative scheme to a global minimizer of the BDF
functional, but under some assumptions on the external field and the ultraviolet cut-off. Our
goal here is to show the existence of a minimizer without any restriction, by means of a
direct—non-constructive—minimization argument.

In the case where no external field is present, the free vacuum is already known to be a
minimizer of the BDF energy, as shown by Chaix–Iracane–Lions [8] and Bach–Barbaroux–
Helffer–Siedentop [4]. In [4], an external field is also considered but vacuum polarization is
neglected: the model studied there is thus very different from the one considered by Chaix–
Iracane in [7] and in the present paper.

Of course the vacuum case is only a first step in the study of the Chaix–Iracane model. In
order to consider atoms and molecules, one has to minimize the BDF energy in a fixed charge
sector, a much more complicated problem from a mathematical point of view. A minimizer
would then solve a self-consistent equation which takes the form of the usual unprojected
Dirac–Fock equations, perturbed by the vacuum polarization potentials.

To deal with divergences, we impose an ultraviolet momentum cut-off �. Our only
restriction on � is its finiteness. Additionally, we study the behaviour of our solution when
� → ∞ and show that the model becomes meaningless since the vacuum density totally
cancels the external potential. In physics, this ‘nullification’ of the theory as the cut-off
diverges has been first predicted by Landau et al [1, 32–34] and later thoroughly studied by
Pomeranchuk et al [40].

We also discuss a simplified model in more detail, neglecting the exchange energy. For
the corresponding self-consistent solution we perform a fully—to any order in the coupling
constant α—consistent charge renormalization scheme. This procedure has already been
performed in perturbation theory by means of Feynman diagrams, see e.g. [41, p 194] and [23].
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In particular, we recover the well-known fact [1, 32, 33] (see also, e.g., [28] equation (7.18)])
that the physical (renormalized) coupling constant αr is related to the bare α by a relation of
the form

αr = α

1 + αB�

, (1)

where B� ∼�→∞ 2/(3π) log �. Therefore, the limit case of an infinite cut-off appears as
unphysical [33] since it would correspond to αr = 0, which means no more electrostatic
interactions.

The paper is organized as follows. In the next section, we recall the BDF model. Our
main existence result is stated in section 3, together with the behaviour of the solution as
� → ∞. In section 4, we study the reduced model and interpret the self-consistent equation
thanks to a renormalization of the charge and the density. Finally, the last section is devoted
to the proof of our main results.

2. The Bogoliubov–Dirac–Fock model

For the sake of clarity, we first briefly recall the Bogoliubov–Dirac–Fock (BDF) model
introduced by Chaix–Iracane in [7] and studied in [25]. Details can be found in [25].

We use relativistic units h̄ = c = 1, set the particle mass equal to 1 and α = e2/(4π).
We emphasize that in the first part e represents the bare charge of the electron. We assume
the presence of an external field ϕ = n ∗ 1

|·| describing one or more extended nuclei with
overall charge density n(x). We do not assume in this work that n is a non-negative function,
since our model allows us to treat the vacuum interacting with both matter and antimatter. We
denote by D0 = α · p + β the free Dirac operator and by Dϕ := D0 − αϕ the Dirac operator
with external potential. Throughout the paper we use the notation χ(−∞,0)(H) to denote the
projector on the negative spectral subspace of H. In the physical literature χ(−∞,0)(H) is often
denoted as �−(H).

When the external field is not too strong, a good approximation is to use the Furry picture
[18] in the Lamb-shift calculations of atomic bound states (see, e.g., [37, 49]). This means that,
in order to evaluate corrections due to vacuum polarization, the dressed vacuum is represented
by the projector associated with the negative spectrum of the Dirac operator with external
potential Dϕ

P ϕ = χ(−∞;0)(D
ϕ).

In reality, the polarized vacuum modifies the electrostatic field, and the virtual electrons react
to the corrected field. This remark naturally leads to a self-consistent equation for the dressed
vacuum of the form

Pscf = χ(−∞;0)(D
ϕ + Veff)

where Veff is an effective potential already including the vacuum polarization potentials. The
BDF model [7] allows us to derive such an effective potential Veff in a self-consistent way,
Pscf being interpreted as a minimizer in the class of Bogoliubov transformations of the free
vacuum P 0 = χ(−∞;0)(D

0).
In practice, Veff can be computed by a fixed-point iterative procedure studied in details in

[25]. If one starts the procedure from P 0, the first iteration gives P ϕ , and this explains why
the Furry picture is a good approximation. But corrections to the Furry picture are necessary
for high accuracy computations of electronic levels near heavy nuclei. These corrections
can be interpreted as the second iteration in a Banach fixed-point algorithm (see, e.g.,
[37 section 8.2]).



4486 C Hainzl et al

Self-consistent equations leading to a fixed-point iterative scheme are well known
and widely used in full QED. The solutions of the Schwinger–Dyson equations [12, 46]
involving the different four-dimensional Feynman propagators are usually found by means of
perturbation theory. Our approach for the special case of the Hartree–Fock theory without
photon studied in this paper is mathematically rigorous, non-perturbative and works for any
charge Z of the external potential.

The momentum cut-off � is implemented in the Hilbert space

H� = {f ∈ L2(R3, C
4) | suppf̂ ⊂ B(0,�)}, (2)

that is the space of spin valued functions whose Fourier transform has support inside a ball
with radius �. Such a sharp cut-off does not allow to keep gauge invariance when photons
are present. Since we neglect photons, we shall however use (2) for simplicity.

The space H� can be decomposed as a direct sum of the negative and positive subspaces
of the free Dirac operator D0, i.e. H� = H0

− ⊕H0
+ where H0

− = P 0H� and H0
+ = (1 −P 0)H�,

P 0 = χ(−∞;0)(D
0). The Fock space F is built upon this splitting as usual [7, 55]:

F :=
∞⊕

n,m=1

F (n)
+ ⊗ F (m)

− ,

where F (n)
+ := ∧n

i=1 H0
+ is the n-electron state subspace, F (m)

− := ∧m
j=1 CH0

− is the m-positron

state subspace and F (0)
+ = F (0)

− = C. Here, C is the charge conjugation operator [55]. The
bare annihilation operators for electrons a0(f ) and positrons b0(f ) are then defined in the
usual way [7, 55], for any f ∈ H�. The field operator reads

�(f ) = a0(f ) + b∗
0(f ).

The free vacuum �0 = 1 ∈ C ⊂ F is characterized up to a phase by the properties
a0(f )�0 = b0(f )�0 = 0 for any f ∈ H�, and ‖�0‖F = 1.

Let us now define the BDF class in the Fock space. Given a new (dressed) projector P, we
define the dressed annihilation operators by aP (f ) = �((1 − P)f ) and bP (f ) = �∗(Pf ).
The associated dressed �P is a state in the Fock space such that aP (f )�P = bP (f )�P = 0
for any f ∈ H� and ‖�P ‖F = 1. By the Shale–Stinespring theorem [50], such an �P is
known to exist and is unique up to a phase, if and only if P − P 0 ∈ S2(H�), the space of
Hilbert–Schmidt operators on H� (see also [30]). The state �P can be expressed as a rotation
of the free vacuum, �P = U�0, U being called a Bogoliubov transformation. An explicit
formula for �P can be found in lots of papers [55, 30, 43, 44, 47, 20]. The BDF class is
therefore the subset of F

B := {�P | P orthogonal projector, P − P 0 ∈ S2(H�)}.
The charge of �P can be easily computed

〈�P |Q|�P 〉 = tr(P 0(P − P 0)P 0) + tr((1 − P 0)(P − P 0)(1 − P 0))

= tr(Q−−) + tr(Q++) (3)

where Q = P − P 0 ∈ S2(H�) and Q−− = P 0QP 0,Q++ = (1 − P 0)Q(1 − P 0). In (3), Q
is the usual charge operator acting on the Fock space F [55, equation (10.52)],

Q =
∑
i�1

a∗
0

(
f +

i

)
a0

(
f +

i

) −
∑
i�1

b∗
0

(
f −

i

)
b0

(
f −

i

)
,

(
f +

i

)
i�1 and

(
f −

i

)
i�1 being, respectively, orthonormal basis of H0

+ and H0
−.



Self-consistent polarized vacuum 4487

Due to (3), we have introduced in [25] the notion of P 0-trace class operators. We say
A ∈ S2(H�) is P 0-trace class if the operators A++ := (1−P 0)A(1−P 0) and A−− := P 0AP 0

are trace-class (∈ S1(H�)), and we define the P 0-trace of A by

trP 0A = tr A++ + tr A−−. (4)

Note, if A is even trace-class then trP 0A = tr A. In the following, we denote by SP 0

1 (H�) the
set of all P 0-trace class operators. Remark that by definition SP 0

1 (H�) ⊂ S2(H�).
We have shown in [25, lemma 2] that any difference of two projectors satisfying the

Shale–Stinespring criterion, Q = P − P 0 ∈ S2(H�), is automatically in SP 0

1 (H�). The
charge 〈�P |Q|�P 〉 = trP 0(Q) is therefore a well-defined number which indeed is always an
integer, as proved in [25, lemma 2]. The P 0-trace is an adequate tool for describing charge
sectors, without using the explicit expression of �P which can be found in the literature.

In this paper, we study the case of the vacuum: namely we want to show the existence of
a BDF state �P ∈ B with lowest energy, which we call a BDF-stable vacuum. For a small
external field, this vacuum will not be charged but if the external field is strong enough, we
could end up with a charged vacuum, 〈�P |Q|�P 〉 = trP 0(P − P 0) �= 0. In order to study
atoms or molecules, one has to minimize the energy in different charge sectors

BN := {�P ∈ B | 〈�P |Q|�P 〉 = N} ⊂ B.

In this case, as explained in [7, section 4.2] (see also [25, remark 6]), the electronic orbitals will
solve the unprojected Dirac–Fock equations, perturbed by the vacuum polarization potentials.
It is our goal to study this constrained minimization problem in the near future.

According to Chaix and Iracane [7, formula (4.1)], the energy of a state �P is defined
using the renormalized Hamiltonian, acting on the Fock space F ,

H =
∫

dx : �∗(x)Dϕ�(x) :P 0 +
α

2

∫
dx

∫
dy

: �∗(x)�(x)�∗(y)�(y) :P 0

|x − y| (5)

where �(x) = ∑
i�1 �(fi)fi(x), (fi)i�1 being an orthonormal basis of H�. The choice of

the normal ordering with respect to P 0 corresponds to subtracting the energy of the free Dirac
sea P 0 and the interaction potentials involving P 0. We emphasize that by this choice we make
the assumption that the free vacuum is unobservable, as done by Dirac [10, 11], Heisenberg
[27] and Weisskopf [57] (see also [26]). In principle, other choices could be made [36].

Evaluating the expectation value of �P , we obtain [25, appendix]

〈�P |H|�P 〉 = E(Q) (6)

where Q = P − P 0 ∈ SP 0

1 (H�) and E is the Bogoliubov–Dirac–Fock energy

E(Q) = trP 0(D0Q) − αD(ρQ, n) +
α

2
D(ρQ, ρQ) − α

2

∫ ∫ |Q(x, y)|2
|x − y| dx dy. (7)

Here, ρQ(x) = tr
C

4Q(x, x) and

D(f, g) = 4π

∫
R

3

f̂ (k)̂g(k)

|k|2 dk.

Note that the density ρQ is well defined due to the ultraviolet cut-off [25, equation (9)], and
that D(f, g) = ∫ ∫

R
6

f (x)g(y)

|x−y| dx dy when f and g are smooth enough.

As this is seen from (6), the energy of �P only depends on Q = P − P 0, which is
interpreted as the renormalized one-body density matrix of �P .
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3. Existence of a BDF-stable polarized vacuum

Following a usual method for Hartree–Fock-type theories [3, 5, 35], we may define and study
the functional E on the extended convex set

S� = {
Q|0 � Q + P 0 � 1,Q ∈ SP 0

1 (H�), ρQ ∈ C
}
, (8)

where C is the so-called Coulomb space consisting of functions with finite Coulomb norm

‖ρ‖2
C := D(ρ, ρ) = 4π

∫
R

3

|̂ρ(k)|2
|k|2 dk.

More precisely, C is the Fourier inverse of the L2 space with weight 1/|k|2.
As our main result we obtain that, for any �, E is bounded-below and has a minimizer on

S�, therefore there exists a BDF-stable vacuum.

Theorem 1. Let 0 � α < 4/π, n ∈ C. Then E satisfies, for any Q ∈ S�,

E(Q) +
α

2
D(n, n) � 0 (9)

and it is therefore bounded from below on S�. Moreover, there exists a minimizer Q̄ of E on
S� such that P̄ = Q̄ + P 0 is a projector satisfying the self-consistent equation

P̄ = χ(−∞,0)

(
D0 − αϕ + αρQ̄ ∗ 1

| · | − α
Q̄(x, y)

|x − y|
)

. (10)

Additionally, if α and n satisfy

0 � α
π

4

{
1 − α

(
π

2

√
α/2

1 − απ/4
+ π1/6211/6

)
‖n‖C

}−1

� 1, (11)

then this global minimizer Q̄ is unique and the associated polarized vacuum is neutral:

〈�P̄ |Q|�P̄ 〉 = trP 0(Q̄) = 0.

The proof of this result is given in section 5.
Equation (10) corresponds to Dirac’s picture that the ‘correct’ vacuum P̄ should be the

projector on the negative spectrum of an effective one-body Hamiltonian. In the case without
external potential, n = 0, the free projector P 0 solves (10) and is the unique BDF-stable
vacuum [4, 8].

Numerically, the self-consistent solution of (10) could be evaluated by a fixed-point
algorithm, starting with P 0. In [25], we proved the convergence of this algorithm to a BDF-
stable vacuum solving (10), under reasonable restrictions of the form α

√
‖n‖2

L2 + ‖n‖2
C � C1

and α
√

log � � C2, using the Banach fixed-point theorem. This proof is much more
constructive than the direct variational proof which is given in section 5. However, the
result of [25] is local in the sense that it is valid for weak external potentials ϕ = n ∗ 1/| · |
only.

Condition (11) means that if the overall charge of the nuclei is not too big and α is small
enough, the BDF-stable vacuum is unique and stays neutral, cf [22, 24]. In general, the
solution found in theorem 1 can correspond to a charged vacuum.

There is an interesting symmetry property of the solutions of (10) when n is replaced
by −n. Namely, if P is a solution of (10) with external density n, then P ′ = Q′ + P 0 is
a solution of (10) with external density −n, where Q′ = −CQC−1, C being the charge
conjugation operator [55, p 14]. The two dressed vacua P and P ′ have the same BDF energies
and satisfy ρQ′ = −ρQ, as suggested by the intuition. For this symmetry between matter and
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antimatter to be true, it is essential to have the Fermi level at 0 and not at −1 (see, e.g., the
comments of [44, p 197] about this fact).

In theorem 1, the cut-off � can be chosen arbitrarily large and it is therefore natural to
describe the behaviour of our solution as � → ∞.

Theorem 2. Let be n ∈ C ∩ L2(R3) and 0 � α < 4/π . Then the solution Q̄� = P̄ � − P 0

obtained in theorem 1 satisfies

‖|D0|1/2Q̄�‖S2 → 0, α‖ρQ̄�
− n‖C → 0

as � → ∞, and therefore

lim
�→∞

min
S�

E = −α

2
D(n, n). (12)

In words, when � → ∞, the vacuum polarization density totally cancels the external
density n, for ρQ̄�

→ n in C. But since Q̄� = P� − P 0 → 0, this means that in the limit
� → ∞, Q̄� and ρQ̄�

become independent. Therefore, the minimization without cut-off
makes no sense both from a mathematical and physical point of view. Indeed (12) easily
implies that when no cut-off is imposed and when ϕ �= 0, the infimum of the functional E is
not attained. In physics, this ‘nullification’ of the theory as the cut-off � diverges has been
first suggested by Landau et al [1, 32–34] and later studied by Pomeranchuk et al [40].

In the next section, we propose a renormalization procedure in which we show an
inequality of the form 2

3π
αr log � � 1 where αr is the physical (renormalized) coupling

constant, different from α. With the usual value αr � 1
137 , this leads to the physical bound

� � 10280 (in units of mc2).
The proof of theorem 2 is given in section 5.

Remark. If n is smooth enough, it can be shown that

‖|D0|1/2Q̄�‖S2 � C1(log �)−1, α‖ρQ̄�
− n‖C � C2(log �)−1

for some constants C1 and C2.

4. Reduced energy functional and charge renormalization

Recall up to now the charge was kept to be the bare one. Next we want to derive a
renormalization scheme consistent to any order of α for the solution of our minimization
problem. Note that this procedure is well known in perturbation theory, see e.g. [41, p 194]
and [23].

We first simplify our BDF energy by neglecting the exchange term

Ered(Q) = trP 0(D0Q) − α

∫
ρQϕ +

α

2
D(ρQ, ρQ). (13)

From a physical point of view this is quite natural, since the exchange term is usually treated
together with a term describing the interaction with the photon field to form the standard
electron self-energy that is a subject of the mass renormalization.

Note that since Ered � E , the energy functional Ered is obviously bounded from below
on S�, by theorem 1. We now state our

Theorem 3. Let 0 � α < 4/π, n ∈ C. Then Ered possesses a minimizer Q̄ on S�, which
satisfies

Q̄ = χ(−∞,0)

(
D0 − αϕ + αρQ̄ ∗ 1

| · |
)

− P 0 + γ0, (14)
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where γ0 is a finite rank operator of the form

γ0 =
K∑

i=1

ni |ϕi〉〈ϕi |, 0 � ni � 1,

(ϕi)
K
i=1 being an orthonormal basis of ker(D0 − αϕ + αρQ̄ ∗ 1/| · |).
Additionally, if α and n satisfy

απ1/6211/6‖n‖C < 1, (15)

then this global minimizer Q̄ is unique and

ker(D0 − αϕ + αρQ̄ ∗ 1/| · |) = {0}
which implies

Q̄ = χ(−∞,0)

(
D0 − αϕ + αρQ̄ ∗ 1

| · |
)

− P 0. (16)

The proof is much simpler than the one of theorem 1: Ered is now a coercive and convex
continuous functional which is therefore weakly lower semi-continuous on the closed convex
set S�, and possesses a minimizer. The proof that it satisfies the self-consistent equation (14)
is the same as the one of theorem 1, except that due to the absence of the exchange term, one
is not always able to prove that Q̄ + P 0 is a projector, as usual in reduced Hartree–Fock-type
theories [53].

In order to perform our renormalization scheme we expand (16) in powers of α. Assuming
that (15) holds, 0 is not in the spectrum of the mean-field operator Dϕ + αρQ̄ ∗ 1/| · | and
we can use the resolvent representation [29, section VI, lemma 5.6] to derive from (16) the
self-consistent equation for the VP-density ρQ(x) = tr

C
4Q(x, x)

ρQ(x) = − 1

2π

∫ ∞

−∞
dη tr

C
4

[
1

D0 − αϕ + αρQ ∗ 1
|·| + iη

− 1

D0 + iη

]
(x, x). (17)

Applying the resolvent equation
1

A − αB
− 1

A
= α

1

A
B

1

A
+ α2 1

A
B

1

A
B

1

A
+ α3 1

A
B

1

A
B

1

A
B

1

A − αB

and using Furry’s theorem [17], telling us that the corresponding α2-term with two potentials
vanish, we obtain

ρQ = αF1[ρQ − n] + F3[αρQ − αn] (18)

with

F3[ρ](x) =
∫ ∞

−∞
dη tr

C
4

×
[

1

D0 + iη
ρ ∗ 1

| · |
1

D0 + iη
ρ ∗ 1

| · |
1

D0 + iη
ρ ∗ 1

| · |
1

D0 − αρ ∗ 1
|·| + iη

]
(x, x).

As realized first by Dirac [10, 11] and Heisenberg [27], cf also [19], the term F1[ρ] plays
a particular role since it is logarithmically ultraviolet divergent. Following, e.g., Pauli–Rose
[39], one evaluates in Fourier representation

F̂ 1[ρ](k) = −ρ̂(k)B�(k),

with

B�(k) = 1

π

∫ �√
1+�2

0

z2 − z4/3

1 − z2

dz

1 + |k|2(1 − z2)/4
, (19)
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which can be decomposed into [39, equation (5)–(9)] B�(k) = B� − C�(k), with

B� = B�(0) = 1

π

∫ �√
1+�2

0

z2 − z4/3

1 − z2
dz = 2

3π
log(�) − 5

9π
+

2

3π
log 2 + O(1/�2). (20)

and

lim
�→∞

C�(k) = C(k) = − 1

2π

∫ 1

0
dx(1 − x2) log[1 + k2(1 − x2)/4], (21)

which was first calculated by Serber and Uehling [48, 56].
Denote ρ = ρQ − n the total density, then (18) reads in terms of ρ

ρ̂ + n̂ = −αB�ρ̂ + αC�(k)ρ̂ + F̂ 3[αρ], (22)

or equivalently

αρ̂ = −αn̂ − α2B�ρ̂ + α2C�(k)ρ̂ + αF̂ 3[αρ] (23)

and

αρ̂ = − α

1 + αB�

n̂ +
α

1 + αB�

C�(k)αρ̂ +
α

1 + αB�

F̂ 3[αρ]. (24)

To perform our renormalization scheme we fix as physical (renormalized) objects αrρr = αρ,
with (cf [28, equations (7)–(18)])

αr = α

1 + αB�

. (25)

Therefore, we can rewrite the self-consistent equation (22) as

αrρ̂r = −αrn̂ + α2
r C�(k)ρ̂r + αrF̂ 3[αrρr], (26)

independently of the bare α. This equation uniquely defines the VP density only depending
on the physical observable αr, which is what we understand to be consistent to any order. The
αr represents the dressed coupling constant, which is observed in experiment and whose value
is approximately 1/137. Note that from formula (25), it follows that necessarily αrB� < 1
and αrB� → 1 as � → ∞. We emphasize that although in the literature the expression of αr

is sometimes expanded to get αr � α(1 − αB�) leading to the condition αB� < 1, the real
constraint indeed applies to the physically observed αr and not the bare one.

Note that equation (26) satisfied by αrρr is exactly the same as equation (23) satisfied by
αρ, but with the logarithmically divergent term α2B�ρ̂ dropped. Therefore, as usual in QED
[12], the charge renormalization allows us to simply justify the dropping of the divergent terms
in the self-consistent equation. In practice [37], one would solve (26) with αr � 1/137 and
with C�(k) replaced by its limit C(k).

Returning to the effective Hamiltonian D0 − αϕ + αρQ ∗ 1/| · | and inserting (26), i.e.
expressing in terms of the physical objects, we obtain

D0 + αrρr ∗ 1

| · | = D0 − αrn ∗ 1

| · | + Veff, (27)

with

Veff = 2

π3
F−1

[
α2

r C�(k)ρ̂r(k) + αrF̂3(αrρr)

k2

]
(x)

the effective self-consistent potential, where F−1 denotes the inverse Fourier transform. Note,
this equation is valid for any strength of the external potential. However, expanding ρr in αr,
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we obtain to lowest order in αr

Veff � α2
r

2

π3
F−1

[
C�(k)n̂(k)

k2

]
(x)

� α2
r

3π

∫ ∞

1
dt (t2 − 1)1/2

[
2

t2
+

1

t4

] ∫
dx ′ e−2|x−x ′ |t n(x ′)

|x − x ′| ,

the Uehling potential [6]. Concerning a point-like particle this potential was first written down
in a closed form by Schwinger [45]. The next term in Veff is of order αr(αrZ)3. In principle
all higher order corrections can be evaluated explicitly, which is not the task of our paper.

Finally, we note that the convergence of the term in the right-hand side of (22), in the case
of the VP density in the Furry picture, i.e. αF̂ 3(αn), was shown in various papers. The most
clarifying proof with respect to spurious third-order contributions can probably be found in
[52] (for earlier proofs, in particular corresponding to muonic atoms, we refer to the references
in [52]). However the fact that this term, αF̂ 3(αn), additionally gives rise to a well-defined
self-adjoint operator was recently proved in [26].

5. Proof of theorems 1 and 2

In this last section, we give the proof of our main theorems.

5.1. Proof of theorem 1

The proof that E is well defined on S� can be found in details in [25, theorem 1]. For simplicity,
we extend E to the closed convex set

S ′
� = {Q ∈ S2(H�), 0 � Q + P 0 � 1, ρQ ∈ C}

of the Hilbert space H := {Q ∈ S2(H�), ρQ ∈ C}, by simply letting

E(Q) = F(Q) − αD(ρQ, n) +
α

2
D(ρQ, ρQ),

F (Q) :=
{

trP 0(D0Q) − α
2

∫ ∫ |Q(x,y)|2
|x−y| dx dy if Q ∈ SP 0

1 (H�)

+∞ if Q /∈ SP 0

1 (H�).
(28)

Let us recall the inequality established in [4]

F(Q) � (1 − απ/4) trP 0(D0Q) = (1 − απ/4)(tr(|D0|Q++) − tr(|D0|Q−−))

(note that Q++ � 0 and Q−− � 0 when Q ∈ S ′
�), which easily implies the bound (9) since

E(Q) � (1 − απ/4) trP 0(D0Q) +
α

2
‖ρQ − n‖2

C − α

2
‖n‖2

C � −α

2
‖n‖2

C . (29)

This also easily shows that both F and E are strongly lower semi-continuous and coercive on
S ′

�. We now prove that E is indeed weakly lower semi-continuous (wlsc) on S ′
� in H, which

will show the existence of a minimizer since S ′
� is closed and convex, and therefore weakly

closed.
Step 1. E is wlsc on S ′

�. Since the functional

Q �→ −αD(ρQ, n) +
α

2
D(ρQ, ρQ) = α

2
‖ρQ − n‖2

C − α

2
‖n‖2

C

is easily seen to be wlsc on the convex set S ′
�, it only remains to prove that F (defined in

(28)) is wlsc on S ′
�. To this end, we consider a weakly converging sequence Qn ⇀ Q in H,

such that Qn ∈ S ′
� for each n. If lim infn F (Qn) = ∞, there is nothing to show and we can
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therefore assume that
(
Q++

n

)
n�1 and

(
Q−−

n

)
n�1 are bounded in S1(H�). Due to the cut-off � in

Fourier space, (Qn(x, y))n�1 is bounded in the Sobolev space H 1(R6, C
4 ⊗C

4),
(
ρ|D0|Q++

n

)
n�1

and
(
ρ|D0|Q−−

n

)
n�1 are bounded for instance in H 1(R3, R). We may thus assume, up to a

subsequence, that Qn(x, y) → Q(x, y) in L2
loc(R

6, C
4 ⊗ C

4), that ρ|D0|Q++
n

→ ρ|D0|Q++ and
ρ|D0|Q−−

n
→ ρ|D0|Q−− in L1

loc(R
3, R).

Let us now consider two real functions η, ξ ∈ C∞([0;∞); [0; 1]) such that η(t) = 1 if
t ∈ [0; 1], η(t) = 0 if t � 2, 0 � η(t) � 1 if t ∈ [1; 2] and η2 + ξ 2 = 1. We now define
ηR(x) := η(|x|/R) and ξR(x) := ξ(|x|/R) for x ∈ R

3. In the following, we also denote by
ηR and ξR the multiplication operators by the functions ηR and ξR , acting on H�.

Lemma 1. We have ‖[ξR, |D0|]‖S∞(H�) = O(1/R).

Proof. We compute 〈ψ |[ξR, |D0|]|χ〉 in Fourier space, for some ψ, χ ∈ H� (we use the
notation E(p) =

√
1 + p2):

〈ψ |[ξR, |D0|]|χ〉 =
∫ ∫

R
6
ξ̂R(p − q)ψ̂(p)χ̂(q)(E(q) − E(p)) dp dq

=
∫ ∫

R
6
ξ̂R(r)ψ̂

(
s +

r

2

)
χ̂

(
s − r

2

) (
E

(
s − r

2

)
− E

(
s +

r

2

))
ds dr

and therefore, using the inequality |E(x) − E(x − y)| � |y|, we obtain

|〈ψ |[ξR, |D0|]|χ〉| �
(∫

R
3
|rξ̂R(r)| dr

)
‖ψ̂‖L2‖χ̂‖L2

and

‖[ξR, |D0|]‖S∞(H�) �
∫

R
3
|rξ̂R(r)| dr = C

R

∫
R

3
|rξ̂1(r)| dr.

�

Using this lemma, we may now write

tr
(|D0|Q++

n

) = tr
(
η2

R|D0|Q++
n

)
+ tr

(
ξ 2
R|D0|Q++

n

)
= tr

(
ηR|D0|Q++

n ηR

)
+ tr

(|D0|ξRQ++
n ξR

)
+ tr

(
[ξR, |D0|]Q++

n ξR

)
= tr

(
ηR|D0|Q++

n ηR

)
+ tr

(|D0|ξRQ++
n ξR

)
+ O(1/R)

since ∣∣tr([ξR, |D0|]Q++
n ξR)

∣∣ � ‖[ξR, |D0|]‖S∞(H�)

∥∥Q++
n

∥∥
S1(H�)

= O(1/R)

by lemma 1 and since by assumption
(
Q++

n

)
n�1 is bounded in S1(H�). With the same

argument for Q−−
n , we obtain

trP 0(D0Qn) = tr
(
ηR|D0|Q++

n ηR

) − tr
(
ηR|D0|Q−−

n ηR

)
+ tr

(|D0|ξRQ++
n ξR

) − tr
(|D0|ξRQ−−

n ξR

)
+ O(1/R).

On the other hand, we have∫ ∫ |Qn(x, y)|2
|x − y| dx dy =

∫ ∫
ηR(x)2η3R(y)2|Qn(x, y)|2

|x − y| dx dy

+
∫ ∫

ξR(x)2|Qn(x, y)|2
|x − y| dx dy + O(1/R)

since ∫ ∫
ηR(x)2ξ3R(y)2|Qn(x, y)|2

|x − y| dx dy �
‖Qn‖2

S2(H�)

R
.
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We therefore obtain

F(Qn) = tr
(
ηR|D0|Q++

n ηR

) − tr
(
ηR|D0|Q−−

n ηR

)
− α

2

∫ ∫
ηR(x)2η3R(y)2|Qn(x, y)|2

|x − y| dx dy + tr
(|D0|ξRQ++

n ξR

)
− tr

(|D0|ξRQ−−
n ξR

) − α

2

∫ ∫
ξR(x)2|Qn(x, y)|2

|x − y| dx dy + O(1/R).

Note now that 0 � Qn + P 0 � 1 implies |Qn|2 � Q++
n − Q−−

n (see [4]). We now localize this
inequality to obtain ξR|Qn|2ξR � ξRQ++

n ξR − ξRQ−−
n ξR . By Kato’s inequality [4], we now

have ∫ ∫
ξR(x)2|Qn(x, y)|2

|x − y| dx dy � π

2
tr
(|D0|ξRQ2

nξR

)
� π

2

(
tr
(|D0|ξRQ++

n ξR

) − tr
(|D0|ξRQ−−

n ξR

))
and therefore, since (1 − απ/4) � 0,

F(Qn) � tr
(
ηR|D0|Q++

n ηR

) − tr
(
ηR|D0|Q−−

n ηR

)
− α

2

∫ ∫
ηR(x)2η3R(y)2|Qn(x, y)|2

|x − y| dx dy + O(1/R).

Passing now to the limit as n → ∞ and using the local compactness of Qn(x, y) in L2
loc(R

6)

and ρ|D0|Q++
n
, ρ|D0|Q−−

n
in L1

loc(R
3), we obtain

lim inf
n→∞ F(Qn) � tr(ηR|D0|Q++ηR) − tr(ηR|D0|Q−−ηR)

− α

2

∫ ∫
ηR(x)2η3R(y)2|Q(x, y)|2

|x − y| dx dy + O(1/R).

If we now let R → ∞, we obtain lim infn→∞ F(Qn) � F(Q) and therefore F is wlsc on S ′
�.

Step 2. At least one of the minimizers satisfies (10). In the previous step, we have shown
the existence of a minimizer. It now remains to show that one of them indeed satisfies (10).

Lemma 2. Let Q̄ be a minimizer of E in S ′
�. Then either Q̄ + P 0 is a projector, or

Q̄ + P 0 = P̄ + µ|f 〉〈f |, (30)

where P̄ is a projector, µ ∈ (0; 1) and f ∈ ker(DQ̄), with

DQ̄ := D0 − αϕ + αρQ̄ ∗ 1

| · | − α
Q̄(x, y)

|x − y| .

Proof. Our proof is inspired by classical arguments already used in the Hartree–Fock theory
[3, 35].

Note that since Q̄ is compact, Q̄ + P 0 is a compact perturbation of P 0 and therefore its
essential spectrum is σess(Q̄ + P 0) = {0, 1}, meaning that σ(Q̄ + P 0) ∩ (0; 1) only contains
eigenvalues of finite multiplicity accumulating at {0, 1}. Let us assume that Q̄ + P 0 possesses
two different eigenvectors ϕ1, ϕ2:

Q̄ + P 0 = λ1|ϕ1〉〈ϕ1| + λ2|ϕ2〉〈ϕ2| + G

where λ1, λ2 ∈ (0; 1) and Gϕ1 = Gϕ2 = 0. We now introduce Q̄ε := Q̄ + ε|ϕ1〉〈ϕ1| −
ε|ϕ2〉〈ϕ2| which belongs to S� for ε small enough and compute

E(Q̄ε) = E(Q̄) + ε(〈ϕ1|DQ̄|ϕ1〉 − 〈ϕ2|DQ̄|ϕ2〉) − ε2 α

2

∫ ∫ |ϕ1 ∧ ϕ2(x, y)|2
|x − y| dx dy.
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Therefore, using either the first-order term in ε if it does not vanish, or the second-order
term, we can always decrease the energy. This is a contradiction which implies that
σ(Q̄ + P 0)∩ (0; 1) contains at most one eigenvalue of multiplicity 1 and thus

Q̄ + P 0 = P̄ + µ|f 〉〈f |
where P̄ is a projector and µ ∈ [0; 1). If µ �= 0, using the same type of variation
Q̄ε := Q̄ + ε|f 〉〈f |, we easily show that indeed f ∈ ker(DQ̄). �

If Q̄ is a minimizer of the form (30), we now see that

E(Q̄) = E(P̄ − P 0) + µ〈DP̄−P 0f, f 〉
= E(P̄ − P 0) + µ〈DQ̄f, f 〉
= E(P̄ − P 0)

and therefore P̄ − P 0 is also a minimizer of E (i.e., P̄ is BDF-stable vacuum). In [25, proof
of theorem 2], we have already shown that a minimizer of E on S� taking the form P̄ − P 0,
where P̄ is an orthogonal projector, is indeed a solution of the self-consistent equation (10).

Step 3. Uniqueness of the global minimizer of E under condition (11). Due to
[25, theorem 2], we know that the global minimizer Q̄ of E is unique if DQ̄ satisfies

d|DQ̄| � |D0|
for some d such that αdπ/4 � 1.

We know that E(Q̄) � E(0) = 0 and therefore, by an argument similar to (29),(
2

π
− α

2

)∫ ∫
R

6

|Q̄(x, y)|2
|x − y| dx dy +

α

2
‖ρQ̄ − n‖2

C � α

2
‖n‖2

C (31)

and thus ∫ ∫
R

6

|Q̄(x, y)|2
|x − y| dx dy � απ/4

1 − απ/4
‖n‖2

C (32)

‖ρQ̄ − n‖C � ‖n‖C . (33)

Recall that DQ̄ = D0 + αϕ′
Q̄

− αRQ̄ where ϕ′
Q̄

= (ρQ̄ − n) ∗ 1/| · | and RQ̄ is the operator

with kernel Q̄(x, y)/|x − y|. Now, we have∥∥∥∥ϕ′
Q̄

1

|D0|
∥∥∥∥

S∞(H�)

�
∥∥∥∥ϕ′

Q̄

1

|D0|
∥∥∥∥

S6(H�)

� (2π)−1/2‖ϕ′
Q̄
‖L6‖E(·)−1‖L6

where we recall that E(p) =
√

1 + p2, and by [51, theorem 4.1]. Therefore,∥∥∥∥ϕ′
Q̄

1

|D0|
∥∥∥∥

S∞(H�)

� S6‖ϕ′
Q̄
‖L6 � S6C6‖∇ϕ′

Q̄
‖L2 = (4π)S6C6‖ρQ̄ − n‖C

with S6 = 2−5/631/6π−1/6 and where C6 = 3−1/622/3π−2/3 is the Sobolev constant for the
inequality ‖f ‖L6(R3) � C6‖∇f ‖L2(R3). Due to (33), this shows that

|ϕ′
Q̄
| � κ‖n‖C |D0|,

where κ = (4π)S6C6 = π1/6211/6. On the other hand, we know from [25, proof of lemma 4]
that

|RQ̄| �

√
π

2

∫ ∫
R

6

|Q̄(x, y)|2
|x − y| dx dy|D0|
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and therefore, using (32),

|RQ̄| � π

2

√
α/2

1 − απ/4
‖n‖C |D0|.

As a conclusion, when

α

(
π

2

√
α/2

1 − απ/4
+ κ

)
‖n‖C < 1,

DQ̄ fulfils d|DQ̄| � |D0| with

d =
{

1 − α

(
π

2

√
α/2

1 − απ/4
+ κ

)
‖n‖C

}−1

.

Applying now [25, theorem 2], we obtain that the minimizer Q̄ is unique when αdπ/4 � 1,
i.e. under condition (11).

Assuming now that (11) holds, let us show that the unique BDF-stable vacuum P̄ is not
charged. To this end, we define, for t ∈ [0; 1],

Q̄(t) = χ(−∞;0)

(
D0 + αt(ρQ̄ − n) ∗ 1

| · | − αt
Q̄(x, y)

|x − y|
)

− P 0.

t �→ Q̄(t) is a continuous function for the S2(H�) topology, since by the previous estimates
DQ̄(t) = D0 + αt(ρQ̄ − n) ∗ 1

|·| − αt
Q̄(x,y)

|x−y| possesses a gap around 0, uniformly in t ∈ [0; 1].
This implies that

q : t �→ trP 0(Q(t)) = tr(Q(t)3)

is continuous on [0; 1], by [25, lemma 2]. Since q(0) = 0 and q(t) is an integer for any
t ∈ [0; 1], we therefore deduce that

q(1) = 〈�P̄ |Q|�P̄ 〉 = trP 0(Q̄) = 0.

This ends the proof of theorem 1.

5.2. Proof of theorem 2

We first prove (12) which will easily imply that Q̄� obtained by theorem 1 behaves at stated
as � → ∞, due to (29). To this end, we introduce

Q� := χ(−∞;0)

(
D0 − αn� ∗ 1

| · |
)

− P 0 ∈ S�,

n̂�(k) := n̂(k)

1 + αB�(k)

where we recall that B�(k) = B� − C�(k) is defined in (19). We now show that

lim
�→∞

E(Q�) = −α

2
D(n, n),

which will imply (12), by (9).
Let us now compute ρ� := ρQ�

. By (22), ρ� satisfies

ρ̂�(k) = α

1 + αB�(k)
n̂(k)B�(k) + F̂3[αn�](k),
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and therefore

ρ̂�(k) − n̂(k) = −n̂�(k) + F̂3[αn�](k).

When α > 0, since (1 + αB�(k))−1 → 0 a.e., we obtain by Lebesgue’s dominated convergence
theorem that ‖n�‖C∩L2 → 0 as � → ∞. By the fixed-point estimates of [25] in the case of
the reduced model (they are then independent on the cut-off � as this can be seen from the
proof of [25, theorem 3]), it is known that F3 is continuous at 0 for the C ∩ L2 topology. We
therefore obtain

lim
�→∞

‖ρ� − n‖C∩L2 = 0.

On the other hand, we also know from the bounds proved in [25] that

trP 0(D0Q�)1/2 = tr
(|D0|Q2

�

)1/2 � Cα‖ρ� − n‖C∩L2

for some constant C independent of �. Therefore,

lim
�→∞

E(Q�) = −α

2
D(n, n)

which ends the proof of theorem 2. �
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